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Abstract—The geometric multigrid method (MGM) using the
point-wise iterative method as the smoother converges slowly
for solving 3-D magnetostatic problems discretized by the fi-
nite element method (FEM) with thin elements in the mesh.
This paper proposes an edge based plane smoother which can
significantly improve the convergence of the MGM. Numerical
examples show that the MGM with the proposed smoother retains
its good efficiency even for edge elements with extremely high
aspect ratios.

I. INTRODUCTION

In the numerical analysis of 3-D magnetostatic problems
discretized by the FEM, iterative methods such as the in-
complete Cholesky conjugate gradient (ICCG) method and the
geometric MGM converge slowly when thin elements are used
in the FEM mesh. The convergence characteristics of ICCG
have been improved by adding unknown variables to near
parallel edges and using the singularity decomposition tech-
nique (SDT) [1]. For the MGM which has an advantage over
the ICCG for problems with a large number of equations, its
efficiency for slightly bad quality meshes has been improved
by using the symmetric Gauss-Seidel preconditioned conjugate
gradient (SGSCG) smoother in the multigrid algorithm [2], but
it deteriorates for extremely thin elements. The reason for this
is that the smoothing effect of the point-wise smoother such as
Gauss-Seidel is poor with respect to the anisotropic direction
in the mesh.

It has been found that for problems discretized by the
FEM with anisotropic meshes, the plane smoother has a better
convergence than the point-wise smoother for the Poisson
equation solved by the MGM for nodal elements [3]. This
paper proposes an edge based plane smoother where the edge
elements in the same anisotropic direction in the FEM mesh
are grouped in a block and their corresponding unknowns
are updated simultaneously in one smoothing iteration. The
convergence characteristics of the proposed smoother in the
multigrid algorithm will be investigated by an academic prob-
lem: a thin magnetic plate with varying thickness surrounded
by a coil. As a practical application, the box shield model
introduced in [4] is analyzed. Numerical results show that sub-
stantial improvement of the solution time can be obtained by
using the MGM with the plane smoother as the preconditioner
of the conjugate gradient method.

(a) Macro element mesh. (b) Finite element mesh.

Fig. 1. A magnetic thin plate meshed by (a) macro elements and (b) finite
elements.

II. FINITE ELEMENT FORMULATION

The differential equation for the static magnetic field can
be formulated as

curl(νcurlA) = curlT 0 (1)

where ν is the magnetic reluctivity, A is the magnetic vector
potential defined by B = curlA, and the divergence free
source current density is described by the curl of the impressed
vector potential T 0.

Approximating the vector potential by ne edge basis func-
tions N i and applying Galerkin techniques to (1) result in the
following algebraic equations,∫

Ω

curlN i · νcurlAhdΩ =

∫
Ω

curlN i · νT 0dΩ

i = 1, 2, ..., ne

(2)

where Ah =
∑ne

i=1 aiN i is the approximation of the vector
potential. Eq. (2) can be written in a matrix form Ax = b.

III. MULTIGRID SMOOTHER

In the geometric MGM, a hierarchy of FEM meshes has
to be constructed. In our case, the geometric structure is
described by a brick shaped so-called macro element that
constitutes the coarse grid of the MGM as shown in Fig. 1(a).
The macro element is automatically subdivided in all three
directions to obtain hexahedral finite elements regarded as
the fine mesh of the MGM as shown in Fig. 1(b). On each
level of finite element meshes, a cheap iterative method called
smoother is implemented for elimination of the high frequency
errors. For the point-wise smoother such as Gauss-Seidel or its
acceleration by the conjugate gradient method, the smoothing
effect is poor with respect to the anisotropic direction, e.g. the
x direction in the anisotropic mesh in Fig. 2 which depicts the
mesh in one of x-z planes of the macro element in Fig. 1(b).
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Fig. 2. The mesh of one of the x-z planes in the macro element.

Fig. 3. Solution times of different methods versus the aspect ratio.

This difficulty can be overcome by including all edges in
x direction in the mesh shown in Fig. 2 in one block and
updating the corresponding unknowns simultaneously by the
following block Gauss-Seidel iteration,

x(v) = x(v−1) −A−1
v (Ax(v−1) − b),

v = 1, 2, ..., nb

(3)

where v is the order number of the block, nb is the number
of blocks and A−1

v is the inverse matrix of the submatrix Av

of A corresponding to the block.
For problems solved by the MGM, the procedure introduced

above has to be applied to each macro element where the
edges in the anisotropic direction of the mesh in each plane
discretized by anisotropic grids are included in one block. The
construction of the blocks and the corresponding submatrices,
as well as the calculation of the inverse of the submatrices need
to be done on each level of FEM meshes during preprocessing.

IV. NUMERICAL EXAMPLES

A. Magnetic thin plate

The convergence of the MGM with the plane smoother
for the thin plate in Fig. 1(b) will be investigated. Second
order hexahedral finite elements with 36 edges have been used
for the calculation. The relative permeability of the plate is
µr = 1 × 103 and the imposed magnetic field in z direction
is produced by a current-fed coil around the plate. The aspect
ratio in the mesh of the plate can be adjusted from 1 to 1000
by simply varying the thickness of the plate.

Fig. 3 compares the solution times of the MGM with
different smoothers. It can be seen that two plane smoothing
iterations are sufficient for efficient reduction of the errors and
the MGM with the plane smoothing has a stable convergence
with the increase of the aspect ratio. Moreover, the conjugate
gradient method preconditioned by the multigrid (MGCG)
with only one plane smoothing iteration results in further
improvement of the efficiency as depicted by the solid line
in Fig. 3.

Fig. 4. Geometry and finite element discretization of the box and the coil.

TABLE I
SOLUTION DATA FOR THE BOX SHIELD MODEL

MGM with SGSCG MGCG with plane smoothing

Number of equations 254072 254072

Number of blocks 0 9086

Preprocessing time (s) 27.768 60.567

Iterations 566 15

Solution time (s) 2167.627 68.391

B. Box shield model

As a practical example in Fig. 4, the box shield model [4]
is analyzed. Only the linear case with a relative permeability
of 1000 has been considered. The thickness of the shield plate
is 0.01mm and the plate is divided into two layers of finite
elements. The maximum aspect ratios in the mesh of the plate
and the air region are 2000 and 10000, respectively.

In Table I, the number of blocks and iterations, the corre-
sponding preprocessing and solution times of the MGM with
the SGSCG smoother and the MGCG with the plane smoother
have been compared. Although the preprocessing time of the
plane smoother is higher than that of the SGSCG smoother as
the inverse of the submatrices has to be calculated, the solution
time has been reduced by more than 95% by the MGCG with
the plane smoother.

V. CONCLUSION

In this paper, we present a plane smoother for edge ele-
ments used in the multigrid algorithm for thin elements in
magnetostatic problems. Numerical results have shown that
the proposed smoother is cheap but efficient for smoothing the
errors and independent of the quality of the mesh. In particular
the decrease of the solution time by using the multigrid with
the plane smoother as the preconditioner of the conjugate
gradient has been demonstrated.
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